SIGNAL BOX, BILLINGSHURST RAILWAY STATION, BILLINGSHURST, WEST SUSSEX

(NGR: TQ 087 251)

HISTORIC BUILDING RECORD

Commissioned by CgMs Consulting on behalf of Network Rail

Report No. 2013129
January 2014

Prepared by Maggie Henderson MA (Hons)
SIGNAL BOX, BILLINGSHURST RAILWAY STATION, BILLINGSHURST, WEST SUSSEX

(NGR: TQ 087 251)

HISTORIC BUILDING RECORD

Commissioned by
CgMs Consulting on Behalf of Network Rail

Report No. 2013129
January 2014

Prepared by Maggie Henderson MA (Hons)
ABSTRACT

A Level 4 Historic Building Record of the Signal Box at Billingshurst Railway Station, Billingshurst, West Sussex was commissioned by CgMs Consulting, on behalf of Network Rail. The record was required in advance of decommissioning the box and relocating it to a Heritage centre, to ensure its survival in the form of an exhibit accessible to visitors.

The type of box, a Saxby and Farmer 1b, suggests that it is re-used from an earlier site in the present location as this type was redundant by 1876 when the Billingshurst box was installed. The lever frame is 1876 vintage, numbered 2273, a Saxby and Farmer Rocker 5”. The upper floor interior clearly indicates that the structure was altered to accommodate this frame which supports the theory that the box pre-dates the site.

The structural evidence suggests that the Billingshurst signal box arrived on site at least partially in-filled on the east side. The remnant in-fill displays features that are suggestive of an insertion to a formerly open ground floor.

On arrival at the site, the remainder of the box received renewed treated stud work, retaining the earlier braces and perhaps re-using some of the earlier in-fill including the sill beams. The external cladding was also renewed.

At this stage the eastern doorway may have been inserted, and the plate cut into, to improve access suited to the new site. The external detail of this doorway suggests that it remained open as the cladding is separate from the rest of the elevation.

For the doorway to be accessible, the external staircase must have been situated in the usual manner at right angles to the box. This suggests that the adjacent footbridge was a slightly later construction (late 19th C) and when added to the site required rotation of the staircase to its present position. When the staircase was re-configured the eastern ground floor doorway was blocked and the western doorway inserted.

Only minor modifications to the building took place in the 20th century comprising repairs to windows and doors, insulation and the installation of central heating at first floor level.
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>List of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Plates</td>
<td>v</td>
</tr>
<tr>
<td>1.0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.0 Scope and Methodology</td>
<td>1</td>
</tr>
<tr>
<td>3.0 Location and Designations</td>
<td>1</td>
</tr>
<tr>
<td>4.0 The Significance of the Building</td>
<td>2</td>
</tr>
<tr>
<td>5.0 Historic Maps and Background</td>
<td>2</td>
</tr>
<tr>
<td>6.0 Description of the Building as Existing (December 2013)</td>
<td>4</td>
</tr>
<tr>
<td>7.0 The Sequence of Development</td>
<td>9</td>
</tr>
<tr>
<td>8.0 Summary of Results and Recommendations for Further Investigation</td>
<td>12</td>
</tr>
<tr>
<td>9.0 Bibliography and Sources</td>
<td>13</td>
</tr>
<tr>
<td>10.0 Deposition of the Archive</td>
<td>13</td>
</tr>
<tr>
<td>11.0 Acknowledgements</td>
<td>14</td>
</tr>
</tbody>
</table>

Figures

Plates

Appendices:
- Appendix 1: Listed Building Details
- Appendix 2: Photographic Register
- Appendix 3: OASIS Form - OASIS ID: maggiehe1-168921
FIGURES

Figure 1: Site Location

Figure 2: Historic Map Extracts
Ordnance Survey County Series First Edition 1876
Ordnance Survey County Series First Revision 1897

Figure 3: Historic Map Extracts
Ordnance Survey County Series Second Revision 1911
Ordnance Survey County Series Third Revision 1939

Figure 4: Historic Map Extracts
Ordnance Survey National Grid First Edition 1972
Ordnance Survey National Grid First Revision 1981

Figure 5: The Building as Existing (Dec. 2013) – Plan of the Upper Floor

Figure 6: Principal Elevations based on the survey by Jacobs (additional detail is authors own)

Figure 7: The Building as Existing (Dec. 2013) – Interior Elevations, North and East

Figure 8: The Building as Existing (Dec. 2013) – Interior Elevations, South and West
PLATES

Plate 1: The Saxby and Farmer Rocker 5" Lever Frame (No. 2273) dated 1876

Plate 2: The balcony on the south side of the building

Plate 3: Detail of the external staircase with cross balustrade to the north of the landing

Plate 4: The south elevation

Plate 5: The box in the c1970s (reproduced from Significance Statement by Malcolm Wood for Network Rail, 2013) shows the multi-pane ground floor window

Plate 6: The west elevation

Plate 7: Photograph showing the north elevation of the signal box and the large post abutting the balcony on the west side (1964 - Ben Brooksbank)

Plate 8: Interior of the ground floor room with concrete raft walkway and untreated ground surface under the locking mechanism (looking east)

Plate 9: The north elevation interior with braces, studs and composite central stud

Plate 10: View of the north and east elevations, structure obscured by instruments

Plate 11: East elevation interior showing the base of the blocked doorway with inserted studs let into notches on the sill

Plate 12: The ceiling of the ground floor room with locking mechanism to the south of a central east – west aligned girder

Plate 13: The south wall of the first floor operating room. The base of the wall showing alterations to accommodate the 1876 lever frame

Plate 14: Detail of wide stud on the south elevation of the operations room showing truncation to accommodate the lever frame

Plate 15: The east interior elevation of the operating room

Plate 16: View of the interior of the operating room towards the west side, the hip rafters of the roof terminal are visible beyond the air conditioning unit

Plate 17: The box diagram above the instrument shelf in the operating room

Plate 18: The east end of the instrument shelf and lever frame with the wide stud just visible on the south wall. The stud includes a winding mechanism for a cable tensioner

Plate 19: Shelf and bracket on the east elevation
1.0 INTRODUCTION

1.1 On the 17th of December 2013, Maggie Henderson carried out a level 4 building record of the signal box at Billingshurst railway station, Billingshurst, West Sussex (Fig. 1: NGR TQ 087 251). The record was commissioned in advance of decommissioning the box and relocating it to Amberley Museum and Heritage Centre, Amberley, West Sussex, where it will be reinstated as an exhibit with visitor access.

2.0 SCOPE & METHODOLOGY

2.1 The principal elements of the survey involved the creation of a record and description of the historic building together with an analysis and interpretation of the building’s origin and historic development.

2.2 The building was visited by Maggie Henderson in order to carry out the on-site recording work. The survey comprised a description of the building supplemented by an internal and external digital photographic record including details of all surviving historic fabric, features, fixtures and fittings. A selection of the photographs is reproduced as plates within this report.

2.3 The descriptive element of the report entailed an initial visual, non-intrusive examination of the fabric carried out in December 2013. It should be clearly stated at this stage that there were certain constraints involving the creation of the measured survey. The signal box is currently still in use and as such was being occupied by the operative at first floor level. In addition, the locking mechanism in the ground floor room was active. Abundant electric cabling fixed to the interior of the ground floor room was ‘live’ and as such it was not safely possible to access all areas to obtain measurements. Additional information may be obtained when the box is decommissioned and this report updated accordingly.

2.4 A set of drawings, produced from a measured outline survey is included within this report (Figs. 5 - 8). The purpose of the drawings is to identify the features included within the written text and to illustrate, as far as is known, the form of the structure during its early stages of development. For clarity, the drawings have been prepared in the form of scale ‘sketches; rather than detailed archaeological record drawings. Taking into accounts the constraints of producing a measured survey in a working signal box, it should be noted that the drawings are intended for illustrative use only and should not be scaled from.

3.0 LOCATION AND DESIGNATIONS

3.1 Location

3.1.1 Billingshurst is bisected by Stane Street which is oriented northeast – southwest linking at both ends to the A29. The Railway Station is situated to the southeast linked to Stane Street by Station Road (Fig. 1). The signal box is located on the eastern side of Station Road adjacent to the wrought iron footbridge that crosses the tracks. The brick-built railway station building is to the east of the footbridge.
3.2 Designations

3.2.1 The signal box at Billingshurst was Listed as Grade II on the 6th of October 2000 (List entry No. 1271531 - Appendix 1). The timber-framed building is rectangular in plan and two storeys in height. As stands, there is doorway access to the points on the ground floor and to the signal room on the first floor via a straight flight of steps that sits adjacent to and parallel with the Grade II Listed footbridge (List entry No. 1271532 – Appendix 1; Fig. 2).

4.0 THE SIGNIFICANCE OF THE BUILDING

4.1 The results of the present survey do support the theory that the box is reused from an earlier location, adapted to its current location and in order to accommodate the Saxby and Farmer lever frame dated to 1876 situated within the first floor operating room.

4.2 The box is highly significant in that it may represent the last surviving example of the Type 1, Saxby and Farmer signal box. There is abundant evidence within the structure that suggests it pre-dates its present location and that it may have had an unenclosed lower floor, with historic inserted in-fill prior to relocation and alteration to its present state.

4.3 The historic significance of this rare survival is emphasised by its re-use, with minimal adaptations at its present site in c. 1876. The lever frame (and perhaps some of the equipment on the instrument shelf) within the first floor operation room is also of 1876 origin, consistent with the relocation of the box.

4.4 The box retains its original footprint, form and function. The materials utilised, even those that have been renewed are consistent with the original and are fully representative of the railway, with many similar (albeit) later examples available for comparison in situ, recorded or removed to heritage sites.

5.0 HISTORIC MAPS AND BACKGROUND (Figures 2 – 4)

5.1 Historic Maps – The Setting

5.1.1 The first edition Ordnance Survey map published in 1876 (Fig. 2) shows Billingshurst Station on the L.B & S. C. R (London, Brighton and South Coast Railway) Mid Sussex Line which at this date was situated in a rural location well beyond the confines of the market town. The station at this stage comprised a group of adjoining buildings on the north side of the track and a further structure opposite to the south. There is no footbridge or signal box associated with the station at this date.

By 1898 (Fig. 2)

5.1.2 The first revision Ordnance Survey map (Fig. 2) shows some new building in the vicinity of the station including some new streets and associated domestic dwellings indicative of population growth in the area, perhaps stimulated by the location of the railway. A cattle market is shown to the south of the tracks (Fig. 2) and a brick yard was located to the southwest (station Brick Yard, not shown on extract). The station had also undergone some alteration: the station building was extended to the west
complete with platforms on both sides of the tracks. The signal box and footbridge are now shown in situ.

1911 and 1939 (Fig. 3)

5.1.3 The second revision Ordnance Survey map shows accelerated growth centred on the station, several new streets complete with domestic dwellings had been established. The Station Brick yard had been significantly enlarged and a Water Works facility was added to the west of it (not shown on this extract). The station group remains intact. By the issue of the third revision map (Fig. 3), the pattern of growth recognised in the area of the station continues at a pace with both domestic and industrial development represented.

1972 and 1981 (Fig. 4)

5.1.4 The National Grid edition map shows that the growth of the area continued well into the second half of the 20th century. Between 1939 and 1972 the development around the station succeeded in joining up with that of Billingshurst proper. The Ordnance Survey maps indicate that the growth was not just in housing; industry is well represented around the station in terms of industrial estates, warehouses, factories, builder’s yards and mills. The location of the railway and its development no doubt stimulated the growth of the area, particularly in terms of industrial facilities, creating a symbiotic relationship between the two.

5.2 The Signal Box

5.2.1 Much of the historic background to the signal box has been covered in detail by Malcolm Wood, Company Secretary of the Railway Heritage Trust in his Statement of Significance prepared for Network Rail in advance of the present project (Network Rail, 2013a). The following information draws upon his results with additional information derived from research in addition to a meeting with Mr Wood to discuss the structure. The comparison photographs included within the text have been reproduced, with permission, from Mr Wood’s report.

5.2.2 This type of signal box extant at Billingshurst station was derived from the original invented by John Saxby, with his first boxes dating to 1857. In 1863, Saxby formed a partnership with John Farmer (English Heritage, 2012). The early boxes comprised a raised box, abundantly glazed with an unenclosed lower storey. The enclosure of the lower part to protect the locking equipment soon followed. Saxby and Farmer was one of the largest operators contracted by the Railway companies to provide signalling boxes, they were contracted by the London Brighton & South Coast Railway to provide boxes, one of which is the Billingshurst example. From 1880, the LB&SCR were producing boxes to their own specifications, although it is clear that the design was derived for the most part from Saxby and Farmer’s Type 5 box (ibid; 19).

Billingshurst

5.2.3 It is clear from the historic map regression exercise described above that the signal box was added to the Billingshurst Station site between 1876 and 1898 (Fig. 2). As already noted, the structure was built for the London, Brighton and South Coast Railway by Saxby and Farmer and is described as a Type 1b box (Appendix 1).
5.2.4 The lever frame is also by Saxby & Farmer and is a Rocker 5" (no. 2273) dating to 1876 comprising seventeen levers (Plate 1) that were relocked in 1993 from non-tappet to tappet (Network Rail, 2013a).

5.2.5 The Saxby and Farmer Type 1 boxes had been superseded in 1868 by the Type 2 (Appendix 1) and as such, the box at Billingshurst, in situ no earlier than 1876, appears to represent a reused building of the earlier type. The standing fabric of the building is indicative of re-use and is discussed in detail below.

5.2.6 Malcolm Wood noted that the rising cost of the absolute block system introduced in 1872 from £25000 to £80000 in 1876 (ibid.) may have led to some of the earlier type boxes being reused in an attempt to cut costs. Some of the Type 1 boxes may therefore have been relocated to new sites to accommodate the expansion of the railway, with the re-used structure adjusted as necessary at its new location.

6.0 DESCRIPTION OF THE BUILDING AS EXISTING (DECEMBER 2013)

6.1 Exterior

6.1.1 The signal box is a timber-framed, rectangular plan building of two storeys in height. The low-pitched roof has hipped end terminals and is under a cover of (modern) felt. The building is oriented with its long axis just off east – west which will henceforth be referred to as having an east – west alignment for clarity within the text (Fig. 5).

6.1.2 The signal box measures c. 4.20 m by 3.10 m, standing to a maximum height of c. 5.80 m above ground level. The basic construction comprised four robust corner posts at 250 mm square section. The posts were not continuous from ground to eaves but comprised separate sections scarf jointed and bolted together (Fig. 6). The base of each post was mounted upon a concrete ‘staddle’ to raise the timber frame above ground level. The staddles are of the same section as the posts and the height offered some protection to the base of the post from rotting out. The exterior of the signal box was weather-clad in horizontal timbers for the most part at 140 mm wide although some wider material was also observed (180 mm) on the upper part of the box.

6.1.3 A narrow balcony had been fixed to three sides of the signal box excluding the east side adjacent to the footbridge. The feature is carried upon a series of shaped iron brackets fixed to the body of the box (Plate 2). The balcony, protected by a guard rail, was a common feature of signal boxes, designed for access to the exterior of the windows and the mirror for maintenance essential to good visibility. A photograph dating to 1895 shows the Billingshurst box without the balcony, suggesting that it was a later addition in this location, the mirror is however shown.

6.1.4 The balcony has been modified in line with modern safety standards. The modifications include additional rails to increase the height and an intermediate rail to reduce the gaps.

North elevation (Fig. 6)

6.1.5 The north elevation is plain at ground floor level but includes a horizontal sliding sash window lighting the operating room on the upper floor. The window comprises four panes to the west and six to the south (Fig. 6), situated behind the balcony that extends to the middle of the first floor elevation.
East Elevation (Fig. 6)

6.1.6 The east elevation is situated adjacent to and parallel with the wrought iron footbridge. At first sight, the east elevation appears to be weather-clad at ground floor level with the only features situated on the upper floor. However, the present staircase abuts a blocked ground floor doorway (Fig. 6). The doorway now lies behind the staircase and is in-filled by weather-boards of the same type as the remainder of the lower part of the box, albeit off-set from the main run of cladding (Fig. 6). The inclusion of a doorway in such a location may suggest that the staircase was rotated to its present position when the footbridge was added (discussed below).

6.1.7 The upper floor of the east elevation includes a replacement two light window; each light with six panes arranged three over three. To the north of the window is a single width doorway reached by the staircase. The staircase rises from a short extension to the platform (no pedestrian access); it abuts the north elevation of the box, and is protected by a balustrade on the east side. The balustrade comprises two parallel rails that follow the slope of the string terminating at a landing enclosed to the north and east by a balustrade. Each side of the balustrade comprises a pair of crossed braces (Plate 3).

6.1.8 The doorway reached by the staircase is plain and unadorned and probably represents a replacement intended to offer fire-protection.

South Elevation (Fig. 6)

6.1.9 The South elevation has a single centrally situated window on the ground floor (Plate 4). The window of two plain rectangular lights separated by a simple stud is clearly a replacement. The area of weatherboards below the sill has also been replaced possible as part of the same programme of alteration. A photograph dating to the 1970s shows a multi-pane window, similar in character to those on the upper floor (Plate 5).

6.1.10 Below the base of the weather boards the sleeper wall is of brick pierced at intervals in a similar manner to vents, but designed in this instance to accommodate fittings that extend out from the box to connect with the tracks.

6.1.11 The first floor of the south elevation is abundantly glazed, with two horizontal sliding sash windows of the same type: one light of four panes and the other of six (Plate 5). The balcony extends the full length of the building on this elevation and conceals the mirror fixed to the southwest post. As noted above, the mirror was *in situ* by 1895 and is probably original to this building.

West Elevation (Fig. 6)

6.1.12 The west elevation includes a single width doorway of vertical tongue and groove type, allowing access to the ground floor room. The doorway abuts the northwest corner post and extends down through the concrete sleeper wall to a brick threshold (Plate 6). The remainder of the ground floor elevation is weather-clad consistent with the other elevations in horizontal boards over a low sleeper wall of concrete.

6.1.13 The first floor of the west elevation has windows across the full width of the building in this case the pair of horizontal sliding sashes are all uniformly of four panes due to this being the narrower axis of the building. The balcony extends across this elevation and includes a gap in the construction in line with the pair of central braces that
support the base of the feature (Plate 6). The gap may have been to accommodate the large post shown on the 1964 photograph (Plate 7).

6.2 Interior – Ground Floor (Fig. 7)

Layout

6.2.1 The ground floor of the building houses the locking system within a single rectangular plan room. The room is accessed via the single width doorway on the west elevation, via a short flight of steps to a concrete platform that occupies much of the room with the exception of the area below the locking mechanism (Fig. 7; Plate 8). The platform is 80 mm thick and appears to sit directly on the ground surface.

Wall Construction - General

6.2.2 The jointed lengths of principal post extend down from the upper floor of the box to the ‘staddle’ stones at the base. The interior of the ground floor lacks any form of cladding: the only in-fill is the horizontal weatherboards of the exterior supported for the most part on an infrastructure of studs. There is no evidence (pressure marks or regular nail holes) of any interior cladding having been included in this area from the outset.

6.2.3 All four walls comprise side girts that extend between the four corner posts of the structure. With the exception of the east wall, which faces towards the platform and station, the walls include rather substantial diagonal straight braces (or raking shores – 175 mm wide). The braces without exception terminate at the soffit of the side girts. No jointing or pegs at the junction between brace and girt was observed due to fitted equipment concealing details and indeed the safety risk of accessing these areas within a working signal box. On the north and west wall, where visible, the braces extend down to terminate at the top of a fairly narrow sill beam (110 mm thick). The sill beams with the exception of the south wall, are supported over shuttered concrete sleeper walls. The sleeper wall height is consistent for the north and east elevations, but set lower to the west. The south elevation lacks such a sleeper but includes a low wall of brick, noted above, specifically designed to allow regular gaps for the through passage to the tracks.

Wall Construction – Specific

North Elevation (Fig. 7)

6.2.4 The north elevation has an inserted composite central stud made up of several adjacent thin vertical members (Plate 9; Fig. 7). The remainder of the wall now includes regular studs that rise from the sill beam to the soffit of the side girt interrupted by the straight braces (Fig. 7).

East Elevation (Fig. 7)

6.2.5 The east elevation was obscured at the date of survey by instrument panels mounted to hardboard to the north of the wall and by the functioning locking mechanism to the south (Plate 10). However, it could clearly be established that the wall differed markedly from the others, lacking straight braces but including a (truncated) plate situated directly below and abutting the end girt (Fig. 7). A series of regularly set studs extended down from this plate, the lower extent not viewed due to the
instrument panel, but presumably terminating at a sill beam, the possible continuation of which is visible towards the south elevation (Fig. 7; Plate 11).

6.2.6 To the south of this section were the remains of the in-filled doorway noted above in the external description. The external blocking of horizontal weatherboards is carried over a series of regular studs that are interrupted by a straight raking shore of narrow scantling (Fig. 7). The lower studs are set into notches cut into the sill beam that presumably continues across the width of the elevation. The beam rests upon the shuttered concrete sleeper wall.

6.2.7 It is suggested that the plate below the end girt is part of an earlier phase of construction perhaps taking place prior to the location of the signal box to Billingshurst. The plate and studs indicate inserted in-fill of a formerly open elevation. The plate appears to have extended the full width of the wall but has been cut into, to insert the (now blocked) doorway, increasing its headroom.

South Elevation (Fig. 8)

6.2.8 The south wall as noted above retains a pair of braces, in this case separated by a short straining beam. The construction here does not include a shuttered concrete sleeper wall, in place; the braces extend lower than the others towards the staddles, but now terminate at a low wall of brick (c. four courses high). As already noted, the brick wall is built to include a series of openings, similar to vents, but designed in this instance to accommodate fittings that extend out from the box to connect with the tracks. The remainder of the south wall comprises interrupted regular studs supporting the external cladding. The studs are situated to each side of the central two-light window. The window has been altered in recent years, replacing a more traditional style, similar to those on the upper floor.

West Elevation (Fig. 8)

6.2.9 The west wall did include a pair of braces: the southern brace remains *in situ* while there is only a remnant of its northern counterpart. The north brace was truncated when the present door was inserted. The insertion of the doorway also caused the truncation of the sill beam and perhaps too the sleeper wall (Fig. 8).

6.2.10 The door frame bears a pair of scarf joints one to each jamb, above the level of the adjacent sill beam. It is suggested that the jambs are formed by re-using some of the studs from the in-fill of the elevation, which of course would only have reached the sill beam, requiring that additional lengths be added. By placing the scarf joint well above the threshold level, the joints were offered some protection from rotting out.

Ceilings and Floors

6.2.11 The ceiling is for the most part concealed by boards. However, a central girder is visible extending across the full length of the building to terminate at the end girts of the west and east elevations (Figs. 7 and 8). The girder forms the north side of the base of the lever frame (Plate 12). It is assumed that the remainder of the floor is supported over joists aligned north – south between the long elevations and the girder although this relationship was not visible at the date of survey due to the ceiling boards.

6.2.12 The floor of the room comprised a raft of 80 mm thick concrete on the northern side of the structure, with the remainder, below the locking mechanism left untreated (Plate
8). The concrete finish provided a dry and stable surface for access to the mechanism. The lower untreated southern side of the room did not require such a surface as passage in that area was significantly impeded by the mechanism. In addition, the rods leading from the system needed to pass unhindered through the sockets in the low brick sleeper wall on the south elevation towards the tracks.

6.2.13 The concrete floor raft abuts the walls indicating that it was added to the building after the insertion of the shuttered concrete sleeper walls to improve access and interior working conditions (Plate 8).

6.3 **Interior – First Floor (Figs 5, 7 & 8)**

Layout

6.3.1 The first floor of the signal box is also known as the operating room. The single un-partitioned room is accessed via the doorway at the northern end of the east elevation reached by the external staircase.

Wall Construction

6.3.2 The room unlike that of the lower floor is clad on the interior with butt-jointed boards slightly deeper than those of the exterior finish (180 mm as opposed to 140 mm). The horizontal close-boarded finish extends round all four elevations and includes with the exception of the south elevation, a low skirting board with chamfered leading edge. The lower boards are missing from the south elevation (Plate 13; Fig. 8). Two applied wide rectangular studs and a series of regular intermediate studs all on the south elevation have been truncated at the base (Plate 14), corresponding with the missing boards and it is assumed that these anomalies are due to the insertion of the lever frame in 1876, requiring alterations to the pre-existing earlier single box.

Windows

6.3.3 As already described for the exterior, the operating floor is substantially lit by abundant windows in each of the four elevations. All windows with the exception of the two fixed six-pane replacements in the east elevation are of the sliding sash variety.

Doors

6.3.4 The single doorway in the east elevation is a modern fire-door (Plate 15).

Ceiling and floor

6.3.5 There is no ceiling within the upper room; the interior of the roof construction has been boarded over leaving only the ridge-board and hip-rafter extant (Plate 16). As such it is not presently possible to determine if the roof structure is original, historic or altered when the external cover was renewed.

6.3.6 The floor, with the exception of the lever frame base has been given a modern vinyl finish.
Fixtures and Fittings

6.3.7 The operating room retains many historic fixtures and fittings, the most significant being the lever frame itself. The frame is described as a Saxby and Farmer Rocker 5" numbered 2773 and dating to 1876, the date at which the Billingshurst signal box is believed to have been installed on site.

6.3.8 Above the lever frame sits the instrument shelf (with block instruments and more modern additions) and the box diagram (Plate 17), although the present diagram is dated to July 2010 (Network Rail Drawing No, 1185).

6.3.9 To the rear of the lever frame, on the eastern of the two wide studs that form part of the south elevation is a winding mechanism (Plate 18). The winding mechanism is a cable tensioner.

6.3.10 Several shelves of historic origin are fitted to the interior of the operating room. The entire east elevation includes a shelf at wall plate level supported on a shaped bracket to the south of the door (Plate 19). Two further shelves are set at mid-height, one on the north elevation adjacent to the door, intended to house the log-book and one on the south elevation adjacent to the west side of the structure, to the rear of the lever frame.

6.4 The Roof

6.4.1 The roof construction was not viewed due to the interior cladding of all but the hip rafters and ridge-board. Additional detail may be obtained when the box is relocated and particular features to look out for would be trimmers for posts that would have extended through the roof to carry the signals if the box is the remains of an earlier type. The flue location for the stove that would originally have heated the interior of the room may also be observed on the north slope (Plate 7).

7.0 THE SEQUENCE OF DEVELOPMENT (Figs 5 - 7)

7.1 Phase 1: Between 1863 and 1876

7.1.1 The results of this historic building survey support the commonly held theory that the construction of the Billingshurst signal box pre-dates its present site. The box is a Type 1(b) Saxby and Farmer and these are documented as having been replaced by the Type 2 box in 1868. There are several anomalies within the fabric of the present structure that supports this interpretation. Under 'normal' circumstances, timber framed buildings that are relocated bear structural evidence of the move, usually in the form of redundant or new jointing, new set-out marks/carpenter marks and clearly different elements belonging to distinct dates of development. For a structure such as this, these clues do not exist and this may be due to the date of construction and indeed the origin and function of the building.

7.1.2 The signal box was commissioned by the LB&SCR in the second half of the 19th century which gives it certain advantages. Such advantages comprise available technology such as rolled steel joists and cranes and more importantly, in the transport afforded by the railway itself. The signal box could easily have been removed from an earlier site almost in its original state, protected by timbers and steel reinforcements and craned into position on the flat bed of a train. In such a way, the
signal box structure could arrive at its new destination unscathed, ready for minor adjustments and alterations necessary to fit it to its new location.

7.1.3 The signal box at this stage, based on the standing fabric of the building would have comprised a fully enclosed upper floor and an un-enclosed lower floor. That the lower floor was open is suggested by the plate and studs in the eastern elevation. The addition of this secondary, lower plate with associated studs suggests insertion into a formerly open frame, the top of the studs for some reason, carried by the lower plate rather than the side girt in the usual manner. It is possible that plate also served a secondary function in relation to the external staircase but this requires further on-site investigation.

7.2 **Phase 2: Late 19th Century (c. 1876, *in situ* by 1898 – Fig. 2)**

7.2.1 The signal box was removed from its original site, probably due to expansion elsewhere on the LNB&SCR line. At its new location in Billingshurst, the box would have been lowered onto the prepared staddles, the area between the stones given its shuttered concrete sleeper walls as part of this site preparation or soon after. The present shuttered concrete finish of the sleeper walls on all but the southern side of the building has been cast *in situ* up to each of these short corner supports which may be part of the original programme of work to set the box in its new site, or represent a slightly later alteration to fully enclose the locking mechanism.

7.2.2 It is not known how much of the box was salvaged intact from the earlier location. Malcolm Wood has suggested that the first floor part, including the top lengths of the principal posts above the scarf joints represents much of the original structure. At ground floor level, the straight braces and perhaps the sill beams and some of the studs (particularly the historic inserted plate and studs of the east elevation) may also have survived from the original.

7.2.3 In its present location the box appears to have been re-clad on the exterior ground floor elevations. No attempt was made to clad the interior as this part of the building housed the locking mechanism and only required intermittent access rather than the constant attentions necessary for the operating floor.

7.2.4 New studs were added for the most part, interrupted by the earlier braces. The studs are tinted pink, as are the weatherboards on the north side interior, which may be due to pressure treatment to reduce fire-risk or indeed rot or infestation, a technique that first appeared in the first half of the 19th century and as such would have been available to the railway companies.

7.2.5 The doorway in the east elevation may have been inserted at this stage in association with renewing the ground floor cladding. The inserted plate was truncated to create better head-room required of the new location.

7.2.6 To accommodate the doorway, the staircase may have been set at right angles to the box, allowing for ease of access into the lower room.

The First Floor

7.2.7 The upper floor, clad on the interior from the outset was modified to accommodate the lever frame. As a result, the lower boards of the south elevation, the two wide studs and the intermediate narrow regular studs were truncated to accommodate the lever
frame mechanism for the seventeen levers required for the Billingshurst site and dated to 1876.

7.3 Phase 3: Late 19th century

7.3.1 The Billingshurst signal box bears signs of modification. Of these, the reconfiguration of the external staircase, the blocking of the east door and the insertion of the west are the more structurally evident.

7.3.2 The external staircase may have been rotated to abut the east elevation, requiring that the ground floor doorway be in-filled and a new means of access created.

7.3.3 The alteration of the staircase may have been driven by the construction of the adjacent footbridge, of unknown date, but suggested as 1876, the same as that of the signal box in the List description (Appendix 1). The historic Ordnance Survey map evidence indicates that the bridge was built between 1876 and 1898 (Fig. 2), again the same date range as that of the signal box. However, it is possible that the box was placed first and the footbridge added soon after.

7.3.4 There is little datable evidence within the infill, the weatherboards or indeed the new doorway on the west side to provide a tighter date range for the sequence of development.

7.3.5 As discussed above, the new western doorway may have been inserted when the eastern one was closed. The construction may have included re-use of the studs removed from the former in-fill. The spliced in members at the base of the door frame may represent such re-use as the studs would only have reached the level of the sill beam and as such would have not been of sufficient length to form the jambs of the new doorway. By placing the scarf joints above the sill and well above ground level reduced a cluster of points of weakness that could be affected by weather damage.

7.3.6 There is photographic evidence that the balcony was added after 1895.

7.4 Phase 4: Modern

7.4.1 Later alterations appear to comprise basic modernisation and repairs. The alterations include the creation of a concrete raft walk-way in the ground floor room to allow safe and easy access to the locking mechanism.

7.4.2 The two-light ground floor window in the south elevation was replaced. It can only be suggested that the window was replaced as it was beyond repair. The windows on the upper floor display a greater degree of historic survival.

7.4.3 The two windows on the east elevation at first floor level have also been replaced, but the remainder of this abundantly glazed structure remain in situ and intact.

7.4.4 The doorway into the first floor operating room was replaced by a fire-proof doorway in line with modern requirements.

7.4.5 The ceiling and roof interior have been insulated and boarded and a radiator installed, presumed to be a replacement to a stove, the usual means of heating the interior of the upper floor. An air conditioning unit is also fixed to the apex of the roof structure.
7.4.6 The balcony was altered in line with modern health and safety requirements.

8.0 SUMMARY OF RESULTS AND RECOMMENDATIONS FOR FURTHER INVESTIGATION

8.1 Due to the constraints discussed above, the origin and development of the Billingshurst signal box can only be suggested. The following summary is based on what evidence was available on the 17th of December 2013 when the signal box survey was carried out:

Summary

8.2 The type of box, a Saxby and Farmer 1b, suggests that it is re-used from an earlier site in the present location as this type was redundant by 1876 when the Billingshurst box was installed. The lever frame is 1876 vintage, numbered 2273, a Saxby and Farmer Rocker 5”. The upper floor interior clearly indicates that the structure was altered to accommodate this frame which supports the theory that the box pre-dates the site.

8.3 The structural evidence suggests that the Billingshurst signal box arrived on site at least partially in-filled on the east side. The remnant in-fill displays features that are suggestive of an insertion to a formerly open ground floor: the secondary plate and studs to the north and the doorway to the south.

8.4 On arrival at the site, the remainder of the box received renewed treated stud work, retaining the earlier braces and perhaps re-using some of the earlier in-fill including the sill beams. The external cladding was also renewed, and for the north side, treated for fire retardation – as this is the site of the stove on the upper floor. The shuttered concrete sleeper walls were probably added during the initial installation stage.

8.5 At this stage the eastern doorway may have been inserted, and the plate cut into to improve access suited to the new site. The external detail of this doorway suggests that it remained open as the cladding is separate from the rest of the elevation. If the doorway was blocked when the ground floor was re-clad one would expect a single run of boards rather than the interrupted timbers that are extant.

8.6 For the doorway to be in use on the eastern side, the staircase must have been situated in the usual manner at right angles to the box. This suggested position of the staircase in turn suggests that the adjacent footbridge was a slightly later construction and when added to the site required rotation of the staircase to abut the east elevation of the box. When the staircase was reconfigured the eastern ground floor doorway was blocked and the western doorway inserted.

Recommendations

8.7 It is suggested that further information may be obtained from the building when it has been decommissioned. Certain areas that may provide particular information are as follows:

8.8 Original studs – is there evidence that the pink tinted studs are additions? Are they notched or nailed in place as expected from an insert or are they housed within mortises? Mortises on the girt soffits would indicate that the box had been enclosed on the ground floor from the outset.
8.9 Original straight braces? Again, are the braces jointed to the soffit of the girts and also, to the sill beams? This would clarify the origin of each of these timbers.

8.10 Is the plate abutting the soffit of the east end girt added or original? Are the studs added or inserted to the plate? Details such as this could confirm that the box was un-enclosed at ground floor level, with inserted in-fill predating that in situ on the Billingshurst site.

8.11 Location of wheel for manually closing the gate. Is there evidence within the floor construction of the upper room for the location of such a feature?

8.12 Is there evidence within the roof structure, if original, to locate posts that could have extended through the roof in the manner of the earliest signal box type? Is there a hatch for ladder access? Can the location of the flue on the north elevation, for the stove, be identified?

9.0 BIBLIOGRAPHY AND SOURCES

Meager, R and Henderson, M., *Written Scheme of Investigation for Level 4 Historic Building Recording Billingshurst Signal Box, Billingshurst Railway Station, Billingshurst, West Sussex* CgMs Consulting December 2013

Network Rail, *Billingshurst Signal Box Statement of Significance 2013a*

Network Rail, *Billingshurst Signal Box Revised Heritage, Design and Access Statement 2013b*

WEBSITES

National Heritage List for England
http://www.english-heritage.org.uk/professional/protection/process/national-heritage-list-for-england/

The Signal Box
http://www.signalbox.org/

Saxby and Farmer page with extracts from 1889 catalogue
http://www.ekeving.se/tlv/Saxby/fpl_lc.html

Website with illustrations of earliest Saxby and Farmer signals
http://www.gracesguide.co.uk/Saxby_and_Farmer

10.0 DEPOSITION OF THE ARCHIVE

The site archive will be deposited with Horsham Museum and Art Gallery, prepared to IFA standards. The archive will comprise a hard copy of the full report, a pdf version of the report on CD, the full photographic record with registers, hard copies of the drawn record, field notes and sketches.
11.0 ACKNOWLEDGEMENTS

The author would like to thank Network Rail for financing the work and Richard Meager of CgMs Consulting for commissioning it. Thanks also to Catherine Jeater of Horsham District Council and Malcolm Wood of The Railway Heritage Trust.
Historic Map Extracts

Fig. 3

Project Ref: 2014129 January 2014
Drawn by: mh

Signal Box, Billingshurst Railway Station, Billingshurst, West Sussex

2nd Revision Ordnance Survey Map (Old Series 1:2500) Published 1911

3rd Revision Ordnance Survey Map (Old Series 1:2500) Published 1939

© Maggie Henderson

Crown Copyright Reserved. Ordnance Survey Licence No. 100053630. No un-authorised reproduction.
Signal Box, Billingshurst Station, Billingshurst, West Sussex

Principal Elevations based on the survey by Jacobs (additional detail is authors own)
First Floor (Operating Floor)

KEY:
- **Phase 1** (c. after 1863)
- **Phase 2** (1876)
- **Phase 3** (Late 19th C)
- **Phase 4** (Modern)
- **Uncertain**
- **B** Brick
- **SC** Shuttered Concrete

THIS DRAWING IS NOT BASED UPON A DETAILED SURVEY AND HAS BEEN PREPARED FOR INTERPRETATIVE PURPOSES ONLY. SOME DETAILS ARE SHOWN APPROXIMATE.
This drawing is not based upon a detailed survey and has been prepared for interpretative purposes only. Some details are shown approximate.

KEY:
- Phase 1 (c. after 1863)
- Phase 2 (1876)
- Phase 3 (Late 19th C)
- Phase 4 (Modern)
- Uncertain

B Brick
SC Shuttered Concrete

West Elevation

0 5 m

Signal Box, Billingshurst Station, Billingshurst, West Sussex

The Building as Existing (Dec. 2013) - Interior Elevations, South and West

© maggle henderson
Ref: 2013/126 Jan 2014
Drawn by: mth

Fig. 8
Plate 1: The Saxby and Farmer Rocker 5” Lever Frame (No. 2273) dated 1876

Plate 2: The balcony on the south side of the building
Plate 3: Detail of the external staircase with cross balustrade to the north of the landing

Plate 4: The south elevation
Plate 5: The box in the c1970s (reproduced from Significance Statement by Malcolm Wood for Network Rail, 2013) shows the multi-pane ground floor window.

Plate 6: The west elevation
Plate 7: Photograph showing the north elevation of the signal box and the large post abutting the balcony on the west side (1964 - Ben Brooksbank)

Plate 8: Interior of the ground floor room with concrete raft walkway and untreated ground surface under the locking mechanism (looking east)
Plate 9: The north elevation interior with braces, studs and composite central stud

Plate 10: View of the north and east elevations, structure obscured by instruments
Plate 11: East elevation interior showing the base of the blocked doorway with inserted studs let into notches on the sill

Plate 12: The ceiling of the ground floor room with locking mechanism to the south of a central east – west aligned girder
Plate 13: The south wall of the first floor operating room. The base of the wall showing alterations to accommodate the 1876 lever frame.

Plate 14: Detail of wide stud on the south elevation of the operations room showing truncation to accommodate the lever frame.
Plate 15: The east interior elevation of the operating room

Plate 16: View of the interior of the operating room towards the west side, the hip rafters of the roof terminal are visible beyond the air conditioning unit.
Plate 17: The box diagram above the instrument shelf in the operating room

Plate 18: The east end of the instrument shelf and lever frame with the wide stud just visible on the south wall. The stud includes a winding mechanism for a cable tensioner
Plate 19: Shelf and bracket on the east elevation
Appendix 1: List entry Summary – Signal Box

This building is listed under the Planning (Listed Buildings and Conservation Areas) Act 1990 as amended for its special architectural or historic interest.

Name: SIGNAL BOX AT BILLINGHURST RAILWAY STATION

List entry Number: 1271531

Location

SIGNAL BOX AT BILLINGHURST RAILWAY STATION, MYRTLE LANE

County: West Sussex
District: Horsham
District Type: District Authority
Parish: Billingshurst

National Park: Not applicable to this List entry.

Grade: II

Date first listed: 06-Oct-2000

BILLINGSHURST

TQ 0825 MYRTLE LANE 965/25/10037 (South, off) 06-OCT-00 Signal Box at Billinghurst Railway Station

GV II

Signal Box. 1876 for the London, Brighton and South Coast Railway, supplied by Saxby and Farmer. It is an S & F type 1b box. Timber framed with a hipped slate roof. The locking room is clad with horizontal boarding with a large structural post at each corner, 2-light window. The upper floor has continuous glazing on the track side apart from a central timber mullion. Centre fixed 6-pane windows with an outer 4-pane sliding sash on each side. The short side of the box looking on to the road has two 4 + 4 sliding sahes with another to the rear. The platform end has a timber stair with a door and window above; the window is obscured by the immediatley adjacent footbridge.

The interior contains a 15 lever Saxby & Farmer rocker frame No 2273. History: This signal box is reliably recorded as having been erected in 1876, but production of the Type 1 box had ceased several years earlier (Type 2 began in 1868), and it may be that this box was re-used from an earlier site.

It may thus date from the 1860's and is anyway probably the oldest working signal box with original frame on the British system. It is the only remaining example of the first standard signal box design and comes from the company which first patented the interlocking frame and thus the fully fledged signal box as a building type.

Listing NGR: TQ0878225109
Appendix 1: List entry Summary - Footbridge

This building is listed under the Planning (Listed Buildings and Conservation Areas) Act 1990 as amended for its special architectural or historic interest.

Name: FOOTBRIDGE AT BILLINGSHURST RAILWAY STATION

List entry Number: 1271532

Location

FOOTBRIDGE AT BILLINGSHURST RAILWAY STATION, MYRTLE LANE

County District District Type Parish
West Sussex Horsham District Authority Billingshurst

Grade: II

Date first listed: 06-Oct-2000

BILLINGSHURST

TQ 0825 MYRTLE LANE 965/25/10042 (South,off) 06-OCT-00 Footbridge at Billingshurst Railway Station

GV II

Railway station footbridge. Circa 1876 for the London Brighton and South Coast Railway. Cast and wrought iron. A wrought iron lattice girder with flat centre and arched ends is supported on four cast iron columns on either platform. These are approached by paired wrought iron stairs at either side, one to the platform and one to the roadway. A complete and attractive footbridge having group value with the immediately adjacent signal box.

Listing NGR: TQ0878825103
Appendix 2:
Photographic Survey Register

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Direction</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First Floor</td>
<td>W</td>
<td>Interior – west side</td>
</tr>
<tr>
<td>2</td>
<td>First Floor</td>
<td>W</td>
<td>Interior – west side</td>
</tr>
<tr>
<td>3</td>
<td>First Floor</td>
<td>SW</td>
<td>Interior – Lever frame, instrument shelf and box diagram</td>
</tr>
<tr>
<td>4</td>
<td>First Floor</td>
<td>W</td>
<td>Interior – close-boarding on west wall</td>
</tr>
<tr>
<td>5</td>
<td>First Floor</td>
<td>W</td>
<td>Interior – west side window detail</td>
</tr>
<tr>
<td>6</td>
<td>First Floor</td>
<td>W</td>
<td>Interior – west side window detail</td>
</tr>
<tr>
<td>7</td>
<td>First Floor</td>
<td>SW</td>
<td>Interior – south west corner</td>
</tr>
<tr>
<td>8</td>
<td>First Floor</td>
<td>N</td>
<td>Visible roof structure</td>
</tr>
<tr>
<td>9</td>
<td>First Floor</td>
<td>S</td>
<td>Interior – window detail</td>
</tr>
<tr>
<td>10</td>
<td>First Floor</td>
<td>SE</td>
<td>Interior – Lever frame and associated fixtures</td>
</tr>
<tr>
<td>11</td>
<td>First Floor</td>
<td>S</td>
<td>Interior – Box diagram</td>
</tr>
<tr>
<td>12</td>
<td>First Floor</td>
<td>S</td>
<td>Interior – instrument shelf detail, west side</td>
</tr>
<tr>
<td>13</td>
<td>First Floor</td>
<td>S</td>
<td>Interior – instrument shelf detail, East side</td>
</tr>
<tr>
<td>14</td>
<td>First Floor</td>
<td>S</td>
<td>Interior – instrument shelf detail, East side</td>
</tr>
<tr>
<td>15</td>
<td>First Floor</td>
<td>S</td>
<td>Interior – truncated stud in south wall, west side</td>
</tr>
<tr>
<td>16</td>
<td>First Floor</td>
<td>SW</td>
<td>Interior – Altered base of south wall</td>
</tr>
<tr>
<td>17</td>
<td>First Floor</td>
<td>N</td>
<td>North wall with shelf</td>
</tr>
<tr>
<td>18</td>
<td>First Floor</td>
<td>NW</td>
<td>General interior</td>
</tr>
<tr>
<td>19</td>
<td>First Floor</td>
<td>NW</td>
<td>Interior – close-boarding and self detail on north wall, west side</td>
</tr>
<tr>
<td>20</td>
<td>First Floor</td>
<td>E</td>
<td>Interior – doorway and east wall</td>
</tr>
<tr>
<td>21</td>
<td>Exterior</td>
<td>N</td>
<td>South elevation</td>
</tr>
<tr>
<td>22</td>
<td>Exterior</td>
<td>N</td>
<td>South elevation</td>
</tr>
<tr>
<td>23</td>
<td>Exterior</td>
<td>NW</td>
<td>South elevation oblique with bridge and station</td>
</tr>
<tr>
<td>24</td>
<td>Exterior</td>
<td>NW</td>
<td>Oblique of roof, balcony and east elevation</td>
</tr>
<tr>
<td>25</td>
<td>Exterior</td>
<td>SW</td>
<td>East and north elevation from bridge</td>
</tr>
<tr>
<td>26</td>
<td>Exterior</td>
<td>E</td>
<td>West elevation</td>
</tr>
<tr>
<td>27</td>
<td>Exterior</td>
<td>SE</td>
<td>West elevation oblique with part of north</td>
</tr>
<tr>
<td>28</td>
<td>Ground Floor</td>
<td>E</td>
<td>Detail of east elevation with plate and studs</td>
</tr>
<tr>
<td>29</td>
<td>Ground Floor</td>
<td>E</td>
<td>Detail of east elevation with plate and studs</td>
</tr>
<tr>
<td>30</td>
<td>Ground Floor</td>
<td>SE</td>
<td>Detail of east elevation, sleeper wall, sill and inserted studs</td>
</tr>
<tr>
<td>31</td>
<td>Ground Floor</td>
<td>SE</td>
<td>Detail of east elevation, sleeper wall, sill and inserted studs</td>
</tr>
<tr>
<td>32</td>
<td>Ground Floor</td>
<td>SE</td>
<td>Detail of east elevation, blocked doorway</td>
</tr>
<tr>
<td>33</td>
<td>Ground Floor</td>
<td>S</td>
<td>South wall base with brace and brick sleeper wall</td>
</tr>
<tr>
<td>34</td>
<td>Ground Floor</td>
<td>SW</td>
<td>Detail of base of locking mechanism and south wall</td>
</tr>
<tr>
<td>35</td>
<td>Ground Floor</td>
<td>SW</td>
<td>Detail of base of locking mechanism and south wall</td>
</tr>
<tr>
<td>36</td>
<td>Ground Floor</td>
<td>S</td>
<td>Detail of west brace at end of south wall</td>
</tr>
<tr>
<td>37</td>
<td>Ground Floor</td>
<td>SE</td>
<td>Ceiling detail</td>
</tr>
<tr>
<td>38</td>
<td>Ground Floor</td>
<td>E</td>
<td>Oblique of south wall showing altered window</td>
</tr>
<tr>
<td>39</td>
<td>Ground Floor</td>
<td>NE</td>
<td>Oblique of north and east walls</td>
</tr>
<tr>
<td>40</td>
<td>Ground Floor</td>
<td>NE</td>
<td>Oblique of north wall with braces in situ</td>
</tr>
<tr>
<td>41</td>
<td>Ground Floor</td>
<td>N</td>
<td>Detail of west brace in north wall</td>
</tr>
<tr>
<td>42</td>
<td>Ground Floor</td>
<td>W</td>
<td>The west elevation</td>
</tr>
<tr>
<td>No.</td>
<td>Location</td>
<td>Direction</td>
<td>Image</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>43</td>
<td>Ground Floor</td>
<td>W</td>
<td>Inserted doorway in the west elevation</td>
</tr>
<tr>
<td>44</td>
<td>Ground Floor</td>
<td>W</td>
<td>Top part of west wall with truncated brace</td>
</tr>
<tr>
<td>45</td>
<td>Ground Floor</td>
<td>E</td>
<td>Detail of concrete raft walkway</td>
</tr>
<tr>
<td>46</td>
<td>Ground Floor</td>
<td>SE</td>
<td>Floor detail</td>
</tr>
<tr>
<td>47</td>
<td>External</td>
<td>N</td>
<td>Staircase detail</td>
</tr>
<tr>
<td>48</td>
<td>External</td>
<td>NW</td>
<td>Staircase detail, blocked doorway and southeast corner post</td>
</tr>
<tr>
<td>49</td>
<td>External</td>
<td></td>
<td>Top part of southeast post and balcony detail</td>
</tr>
<tr>
<td>50</td>
<td>External</td>
<td>W</td>
<td>Part of box, staircase and bridge</td>
</tr>
<tr>
<td>51</td>
<td>External</td>
<td>SW</td>
<td>Oblique of north elevation and bridge</td>
</tr>
<tr>
<td>52</td>
<td>External</td>
<td>S</td>
<td>Staircase balustrade detail at landing</td>
</tr>
<tr>
<td>53</td>
<td>External</td>
<td>SW</td>
<td>Detail of east elevation</td>
</tr>
<tr>
<td>54</td>
<td>External</td>
<td>NW</td>
<td>Oblique of south elevation</td>
</tr>
<tr>
<td>55</td>
<td>External</td>
<td>N</td>
<td>South elevation</td>
</tr>
<tr>
<td>56</td>
<td>External</td>
<td>N</td>
<td>South elevation ground floor window</td>
</tr>
<tr>
<td>57</td>
<td>External</td>
<td>N</td>
<td>South elevation first floor windows and balcony</td>
</tr>
<tr>
<td>58</td>
<td>External</td>
<td>NE</td>
<td>Oblique of south and west elevations</td>
</tr>
<tr>
<td>59</td>
<td>External</td>
<td>NE</td>
<td>Oblique of box with bridge and station</td>
</tr>
<tr>
<td>60</td>
<td>External</td>
<td>E</td>
<td>West elevation</td>
</tr>
<tr>
<td>61</td>
<td>External</td>
<td>SW</td>
<td>Oblique of north and west elevations</td>
</tr>
<tr>
<td>62</td>
<td>External</td>
<td></td>
<td>Balcony bracket detail on west side</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3: OASIS DATA COLLECTION FORM: England

OASIS ID: maggiehe1-168921

Project details

Project name: Level 4 Survey of Billingshurst Signal Box

Short description of the project: A Level 4 Historic Building Record of the Signal Box at Billingshurst Railway Station, Billingshurst, West Sussex was commissioned by CgMs Consulting, on behalf of Network Rail. The record was required due in advance of decommissioning the box and relocating it to a Heritage centre, ensuring its survival in the form of an exhibit accessible to visitors. The type of box, a Saxby and Farmer 1b, suggests that it is re-used from an earlier site in the present location as this type was redundant by 1876 when the Billingshurst box was installed. The lever frame is 1876 vintage, numbered 2273, a Saxby and Farmer Rocker 5.

Project dates: Start: 17-12-2013 End: 17-12-2013

Previous/future work: No / Not known

Any associated project reference codes: 1271531 - LBS No.

Type of project: Building Recording

Site status: Listed Building

Current Land use: Transport and Utilities 2 - Other transport infrastructure

Monument type: RAILWAY SIGNAL BOX Post Medieval

Significant Finds: LEVER FRAME Post Medieval

Prompt: National Planning Policy Framework - NPPF

Project location

Country: England

Site location: WEST SUSSEX HORSHAM BILLINGSHURST Billingshurst Signal Box

Postcode: RH14

Study area: 12.90 Square metres

Site coordinates: TQ 087820 251090 51.0145118271, -0.449055146049 51 00 52 N 000 26 56 W Point

Height OD / Depth: Min: 21.02m Max: 26.82m

Project creators
Name of Organisation: Maggie Henderson
Project brief originator: Consultant
Project design originator: Maggie Henderson and Richard Meager
Project director/manager: Maggie Henderson
Project supervisor: Maggie Henderson
Type of sponsor/funding body: Network Rail
Name of sponsor/funding body: Network Rail
Project archives
Physical Archive Exists?: No
Digital Archive recipient: Horsham Museum and Art Gallery
Digital Contents: "other"
Digital Media available: "Images raster / digital photography", "Text"
Paper Archive recipient: Horsham Museum and Art Gallery
Paper Contents: "other"
Project bibliography 1
Publication type: Grey literature (unpublished document/manuscript)
Title: SIGNAL BOX, BILLINGSHURST RAILWAY STATION, BILLINGSHURST, WEST SUSSEX (NGR: TQ 087 251) HISTORIC BUILDING RECORD
Author(s)/Editor(s): Maggie Henderson
Other bibliographic details: 2013129
Date: 2014
Issuer or publisher: Maggie Henderson
Place of issue or publication: West Sussex
Description: A4 bound report - grey literature